\vec{A}\cdot\vec{A} = |\vec{A}||\vec{A}|\cos{\theta} = |\vec{A}|^2
If you know the vector in x-y component form,
\vec{A}\cdot\vec{A} = \left(A_x\,\hat{\imath}+A_y\,\hat{\jmath}\right)\cdot\left(A_x\,\hat{\imath}+A_y\,\hat{\jmath}\right) = A_x^2 + A_y^2 = |\vec{A}|^2
It works out this way because the unit vectors are orthogonal (perpendicular) in our cartesian system:
\hat{\imath}\cdot\hat{\imath}=1, \quad \hat{\imath}\cdot\hat{\jmath}=0
If you do it this way, it will work in all coordinate systems. Treating the vector as a little right triangle only works if you know the vector in x-y component form.
No comments:
Post a Comment